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COMMENT 

Heat capacity of two-dimensional O ( n )  spin systems by the 
Monte Carlo method 

Jean-Louis Colot 
CP 234, Universite Libre de Bruxelles, Bd du Triomphe, B-1050 Brussels, Belgium 

Received 8 August 1983 

Abstract. Monte Carlo estimates of the heat capacity of the two-dimensional O ( n )  spin 
systems with n = 3, 4 and 5 are compared to the results given by the spherical model 
( n - . ~ ) .  The values of the maxima of the heat capacity are approximately equal to i n .  
when the temperature is 2n - '. The C / n  against nT curves of the estimates come close to 
the curve of the spherical model for n T 3 4 .  

1. Introduction 

The role of the heat capacity in the understanding of the two-dimensional O ( n )  spin 
systems has been emphasised in recent papers by Brout et a1 (1983~2, b )  and Brout 
and Silovy (1983). Maxima in the heat capacity, as shown on the O(3) energy curves 
in terms of the temperature (Watson et al 1970, Shenker and Tobochnik 1980), are 
reminiscent of an ordering transition. In the corresponding region of temperature, 
the fluctuation regime of the spins differs qualitatively from the low-temperature 
regime where one degree of freedom is inactivated for the short length scales. The 
application of the spherical model to the analysis of this fluctuation regime provides 
a guide for a better understanding of the mechanism which foils a true transition in 
those two-dimensional systems (Brout er a1 1983a, b), and in the systems of lattice 
gauge theory to which they are related (Polyakov 1975). This comment makes a 
quantitative comparison of the heat capacity of the two-dimensional O( n) systems for 
small n (3 ,4  and 5) with that of the limit case n+m,  the spherical model. The 
computations were made using the Monte Carlo method. 

2. The method 

The algorithm of Metropolis (Binder 1979) determines the transition process of the 
n-dimensional spins for an energy defined by the expression 

E =-(2T)- '  c sis, 
1.1 

where T is the temperature and i, j are neighbouring sites of the lattice. A convenient 
transition rate is obtained by using as new spin vector, the normalisation of the sum 
of its most recent value with a random vector selected out of a sphere (Landau and 
Binder 1981). For convenience and computational efficency in the APL language which 
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has been used, the algorithm is vectorised. The lattice 32 X 33 is split into two sublattices 
A and B so that the nearest neighbours of the sublattice A be located on the sublattice 
B, and vice versa. The transition process is applied globally to the spins of a sublattice. 
Quasi-periodic boundary conditions are used (Watson et a1 1969). In this scheme, 
the spins may be labelled by a single index, and the indices of the nearest neighbours 
are easily computed by adding a constant to the site index (modulo the number of the 
sublattice sites). 

The first 20 percent of each run have been systematically disregarded. If necessary, 
more have been skipped until no significant difference was found between the runs 
corresponding to the ordered and the random initial configurations. 

The standard deviation of the energy is estimated from the expression 

c2(Eg)=N-1(N-1)-1C (Eg-(Eg))2  
g 

for the variance of the energy Eg of N groups of 40 approximately independent 
configurations. The averages are taken once every eight passes through the lattice, 
and sometimes four. The heat capacity C is estimated from the fluctuation of the energy 

c = N , T - ~  1 ( E - ( E ) ) ~  

where N, is the number of the lattice sites. The corresponding standard deviation is 
given in the same way by the variance of C across groups of 40 configurations. The 
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Figure 1. Heat capacity of O ( 3 )  in terms of the 
temperature. Estimates from the energy fluctuations 
are shown for (A) ordered and (.) random initial 
configurations. The lower graph indicates standard 
deviations of these quantities. 

Figure 2. Heat capacity of O(4) in terms of the 
temperature. Symbols as for figure 1, 
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heat capacity is also computed by derving the energy by means of the expression 

[ E (  T + 0.1) - E (  T -  0.1)]/0.2. 

{ a [ E  ( T + 0. l)] + a [ E  ( T - 0.1)]}/0.2. 

The statistical error is measured in this case by 

Typically 6000 Monte Carlo passes through the crystal have been calculated for 
the temperatures where the heat capacity reaches the maximum. This was needed in 
order to get satisfactory o(C) .  u ( E )  is then lower than 0.0025, and the estimates of 
the energy for runs with ordered and random initial configurations differ by less than 
the statistical inaccuracy. The ordered initial configuration is taken with equal spin 
components. 

3. Results 

The heat capacity per spin is shown in figures 1, 2 and 3 for 0 (3) ,  O(4) and O(5)  
respectively. The estimates obtained from the energy fluctuations are denoted respec- 
tively for ordered and random initial configurations by triangles and squares. In the 
lower part of the graph, the same symbols are used for the standard deviations of 
these quantities. The values related to the energy differences are indicated by circles 
for both ordered and random initial configurations as they are close. The statistical 
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Figure 3. Heat capacity of O(5) in terms of the 
temperature. Symbols as for figures 1 and 2. 

Figure 4. Comparison between the heat capacity of 
O( n )  spin system. The heat capacity divided by n is 
plotted in terms of the temperature multiplied by n 
for: 0,  O(3);  M, O(4) and A, O ( 5 ) .  
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errors previously defined are less than the diameter of the circles. One sees that the 
two estimates of the heat capacity are coherent. 

For low temperatures, the curves are compatible with the spin wave theory C = 
$( n - 1). In the intermediate region ( T -  2n-'), the heat capacity shows a maximum 
approximately equal to i n .  More precisely, the values of nT are 2.07, 2 and 1.75 for 
n = 3, 4 and 5 respectively, while the maxima of the curves become less sharp. From 
the extrapolation of these values (and including in addition 0(1), the Ising model 
(nTc-2.269), and 0 ( 2 ) ,  the X Y  model (nT-2 .17) ) ,  we speculate that the maxima 
will disappear for n b 7.  The curves for different values of n are compared in figure 
4. The heat capacity (estimated by deriving the energy) divided by n is plotted in 
terms of the temperature multiplied by n for O(3) (circles), O(4) (squares) and O(5)  
(triangles). The limit n +CO (the continuous curve) is approached when the temperature 
is higher than 4n-'. 

Additional computations, for the estimate of the derivative of the energy with 
temperature differences of 0.1, and for samples of 14 X 15 O(3) spins, show no sig- 
nificant deviations from these results. 
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Note added in proof. For the case of 0 ( 3 ) ,  we have further analysed the data in an attempt to interpret the 
maximum in heat capacity. Our tentative conclusion is the following. At low temperature where our sample 
are effectively magnetised, we divide the Hamiltonian into three pieces 

( H )  = 4 2  r)-l {(s:s; ) + (s: + [(STS; ) - (s; )( s; )I} 
1.1 

( S : )  the magnetisation and I denotes the n -- 1 directions transverse to it. In the vicinity of the maximum, 
it is the term in (S : ) (S ; )  which varies the most rapidly with T. Therefore, it appears that the maximum is 
due to the break-up of short range order, i.e. a remnant of the heat capacity singularity of the Ising model 
which is due to the break-up (on the low T side) or establishment (on the high T side) of global order. 
We intend to publish a more detailed report of these aspects in a future publication. 
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